Response of Viral Shells under Nano-Indentation
نویسندگان
چکیده
منابع مشابه
Localization of deformation in thin shells under indentation
We perform a hybrid experimental and numerical study of the localization of deformation in thin spherical elastic shells under indentation. Past a critical indentation, the deformation of the shell ceases to be axisymmetric and sharp points of localized curvature form. In plates, these sharp points are known as d-cones. By way of analogy, regions of localization in shells are referred to as s-c...
متن کاملTemperature Effect on Mechanical Properties of Top Neck Mollusk Shells Nano-Composite by Molecular Dynamics Simulations and Nano-Indentation Experiments
Discovering the mechanical properties of biological composite structures at the Nano-scale is much interesting today. Top Neck mollusk shells are amongst biomaterials Nano-Composite that their layered structures are composed of organic and inorganic materials. Since the Nano indentation process is known as an efficient method to determine mechanical properties like elastic modulus and hardness ...
متن کاملIndentation of ellipsoidal and cylindrical elastic shells.
Thin shells are found in nature at scales ranging from viruses to hens' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findi...
متن کاملFinite indentation of highly curved elastic shells
Experimentally measuring the elastic properties of thin biological surfaces is non-trivial, particularly when they are curved. One technique that may be used is the indentation of a thin sheet of material by a rigid indenter, while measuring the applied force and displacement. This gives immediate information on the fracture strength of the material (from the force required to puncture), but it...
متن کاملElastic response, buckling, and instability of microtubules under radial indentation.
We tested the mechanical properties of single microtubules by lateral indentation with the tip of an atomic force microscope. Indentations up to approximately 3.6 nm, i.e., 15% of the microtubule diameter, resulted in an approximately linear elastic response, and indentations were reversible without hysteresis. At an indentation force of around 0.3 nN we observed an instability corresponding to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2009
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2008.12.983